Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 15(6): 1443-1461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36858136

RESUMO

BACKGROUND & AIMS: Enteroendocrine cells (EECs) and their hormones are essential regulators of whole-body energy homeostasis. EECs sense luminal nutrients and microbial metabolites and subsequently secrete various hormones acting locally or at a distance. Impaired development of EECs during embryogenesis is life-threatening in newborn mice and humans due to compromised nutrient absorption. However, the physiological importance of the EEC system in adult mice has yet to be directedly studied. Herein, we aimed to determine the long-term consequences of a total loss of EECs in healthy adults on energy metabolism, intestinal transcriptome, and microbiota. METHODS: We depleted intestinal EECs by tamoxifen treatment of adult Neurog3fl/fl; Villin-CreERT2 male mice. We studied intestinal cell differentiation, food efficiency, lipid absorption, microbiota composition, fecal metabolites, and transcriptomic responses in the proximal and distal small intestines of mice lacking EECs. We also determined the high-fat diet-induced transcriptomic changes in sorted Neurog3eYFP/+ EECs. RESULTS: Induction of EEC deficiency in adults is not life-threatening unless fed with a high-fat diet. Under a standard chow diet, mice lose 10% of weight due to impaired food efficiency. Blood concentrations of cholesterol, triglycerides, and free fatty acids are reduced, and lipid absorption is impaired and delayed in the distal small intestine. Genes controlling lipogenesis, carbohydrate metabolism, and neoglucogenesis are upregulated. Microbiota composition is rapidly altered after EECs depletion and is characterized by decreased α-diversity. Bacteroides and Lactobacillus were progressively enriched, whereas Lachnospiraceae declined without impacting fecal short-chain fatty acid concentrations. CONCLUSIONS: EECs are dispensable for survival in adult male mice under a standard chow diet. The absence of EECs impairs intestinal lipid absorption, leading to transcriptomic and metabolic adaptations and remodeling of the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Humanos , Masculino , Camundongos , Animais , Intestinos , Células Enteroendócrinas/metabolismo , Hormônios/metabolismo , Colesterol/metabolismo
2.
J Cell Sci ; 134(24)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34841431

RESUMO

The main laminin-binding integrins α3ß1, α6ß1 and α6ß4 are co-expressed in the developing kidney collecting duct system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud, which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits cooperate in kidney collecting duct development, we deleted α3 and α6 in the developing ureteric bud. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age, the mice developed severe inflammation and fibrosis around the collecting ducts, resulting in kidney failure. Integrin α3α6-null collecting duct epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characteristics, causing loss of barrier function. These features resulted from increased nuclear factor kappa-B (NF-κB) activity, which regulated the Snail and Slug (also known as Snai1 and Snai2, respectively) transcription factors and their downstream targets. These data suggest that laminin-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


Assuntos
Integrinas , Túbulos Renais Coletores , Animais , Células Epiteliais , Inflamação/genética , Integrina alfa3beta1 , Integrinas/genética , Laminina/genética , Camundongos , NF-kappa B/genética
3.
Nat Aging ; 1(2): 190-204, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-37118636

RESUMO

Hair follicles, mammalian mini-organs that grow hair, miniaturize during aging, leading to hair thinning and loss. Here we report that hair follicle stem cells (HFSCs) lose their regenerative capabilities during aging owing to the adoption of an atypical cell division program. Cell fate tracing and cell division axis analyses revealed that while HFSCs in young mice undergo typical symmetric and asymmetric cell divisions to regenerate hair follicles, upon aging or stress, they adopt an atypical 'stress-responsive' type of asymmetric cell division. This type of division is accompanied by the destabilization of hemidesmosomal protein COL17A1 and cell polarity protein aPKCλ and generates terminally differentiating epidermal cells instead of regenerating the hair follicle niche. With the repetition of these atypical divisions, HFSCs detach from the basal membrane causing their exhaustion, elimination and organ aging. The experimentally induced stabilization of COL17A1 rescued organ homeostasis through aPKCλ stabilization. These results demonstrate that distinct stem cell division programs may govern tissue and organ aging.


Assuntos
Folículo Piloso , Células-Tronco , Animais , Camundongos , Divisão Celular , Cabelo , Mamíferos , Regeneração , Envelhecimento
4.
Blood ; 136(2): 210-223, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32219444

RESUMO

Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Deleção de Genes , Integrina alfa6 , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Pirimidinas/farmacologia , Animais , Anticorpos Antineoplásicos/farmacologia , Anticorpos Neutralizantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Integrina alfa6/genética , Integrina alfa6/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia
5.
Development ; 147(4)2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31988184

RESUMO

Integrin dimers α3/ß1, α6/ß1 and α6/ß4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated using the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice; however, myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins, and underline an essential role of cell interactions with laminin for lactogenic differentiation.


Assuntos
Integrinas/fisiologia , Lactação , Glândulas Mamárias Animais/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Sobrevivência Celular , Citoesqueleto/fisiologia , Progressão da Doença , Feminino , Deleção de Genes , Hormônios/fisiologia , Integrina alfa3/fisiologia , Integrina alfa6/fisiologia , Integrina beta1/fisiologia , Integrina beta4/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Mutantes , Mutação , Células-Tronco Neoplásicas/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Ovário/fisiologia , Fenótipo , Gravidez , Prenhez , Prognóstico , Ligação Proteica , Multimerização Proteica
6.
Mol Metab ; 29: 24-39, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31668390

RESUMO

OBJECTIVE: Enteroendocrine cells (EECs) of the gastro-intestinal tract sense gut luminal factors and release peptide hormones or serotonin (5-HT) to coordinate energy uptake and storage. Our goal is to decipher the gene regulatory networks controlling EECs specification from enteroendocrine progenitors. In this context, we studied the role of the transcription factor Rfx6 which had been identified as the cause of Mitchell-Riley syndrome, characterized by neonatal diabetes and congenital malabsorptive diarrhea. We previously reported that Rfx6 was essential for pancreatic beta cell development and function; however, the role of Rfx6 in EECs differentiation remained to be elucidated. METHODS: We examined the molecular, cellular, and metabolic consequences of constitutive and conditional deletion of Rfx6 in the embryonic and adult mouse intestine. We performed single cell and bulk RNA-Seq to characterize EECs diversity and identify Rfx6-regulated genes. RESULTS: Rfx6 is expressed in the gut endoderm; later, it is turned on in, and restricted to, enteroendocrine progenitors and persists in hormone-positive EECs. In the embryonic intestine, the constitutive lack of Rfx6 leads to gastric heterotopia, suggesting a role in the maintenance of intestinal identity. In the absence of intestinal Rfx6, EECs differentiation is severely impaired both in the embryo and adult. However, the number of serotonin-producing enterochromaffin cells and mucosal 5-HT content are increased. Concomitantly, Neurog3-positive enteroendocrine progenitors accumulate. Combined analysis of single-cell and bulk RNA-Seq data revealed that enteroendocrine progenitors differentiate in two main cell trajectories, the enterochromaffin (EC) cells and the Peptidergic Enteroendocrine (PE) cells, the differentiation programs of which are differentially regulated by Rfx6. Rfx6 operates upstream of Arx, Pax6 and Isl1 to trigger the differentiation of peptidergic EECs such as GIP-, GLP-1-, or CCK-secreting cells. On the contrary, Rfx6 represses Lmx1a and Tph1, two genes essential for serotonin biosynthesis. Finally, we identified transcriptional changes uncovering adaptive responses to the prolonged lack of enteroendocrine hormones and leading to malabsorption and lower food efficiency ratio in Rfx6-deficient mouse intestine. CONCLUSION: These studies identify Rfx6 as an essential transcriptional regulator of EECs specification and shed light on the molecular mechanisms of intestinal failures in human RFX6-deficiencies such as Mitchell-Riley syndrome.


Assuntos
Diferenciação Celular , Fatores de Transcrição de Fator Regulador X/metabolismo , Serotonina/metabolismo , Animais , Linhagem da Célula , Diarreia/metabolismo , Diarreia/patologia , Metabolismo Energético , Células Enterocromafins/citologia , Células Enterocromafins/metabolismo , Células Enteroendócrinas/citologia , Células Enteroendócrinas/metabolismo , Feminino , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição de Fator Regulador X/deficiência , Fatores de Transcrição de Fator Regulador X/genética , Análise de Célula Única , Fatores de Transcrição/metabolismo
8.
Nature ; 568(7752): 344-350, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944469

RESUMO

Stem cells underlie tissue homeostasis, but their dynamics during ageing-and the relevance of these dynamics to organ ageing-remain unknown. Here we report that the expression of the hemidesmosome component collagen XVII (COL17A1) by epidermal stem cells fluctuates physiologically through genomic/oxidative stress-induced proteolysis, and that the resulting differential expression of COL17A1 in individual stem cells generates a driving force for cell competition. In vivo clonal analysis in mice and in vitro 3D modelling show that clones that express high levels of COL17A1, which divide symmetrically, outcompete and eliminate adjacent stressed clones that express low levels of COL17A1, which divide asymmetrically. Stem cells with higher potential or quality are thus selected for homeostasis, but their eventual loss of COL17A1 limits their competition, thereby causing ageing. The resultant hemidesmosome fragility and stem cell delamination deplete adjacent melanocytes and fibroblasts to promote skin ageing. Conversely, the forced maintenance of COL17A1 rescues skin organ ageing, thereby indicating potential angles for anti-ageing therapeutic intervention.


Assuntos
Homeostase , Envelhecimento da Pele/patologia , Envelhecimento da Pele/fisiologia , Pele/citologia , Pele/patologia , Células-Tronco/citologia , Células-Tronco/patologia , Animais , Atrofia , Autoantígenos/química , Autoantígenos/metabolismo , Divisão Celular , Proliferação de Células , Células Clonais/citologia , Células Epidérmicas/citologia , Células Epidérmicas/patologia , Feminino , Genoma , Hemidesmossomos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Colágenos não Fibrilares/química , Colágenos não Fibrilares/metabolismo , Estresse Oxidativo , Proteólise , Colágeno Tipo XVII
9.
Stem Cell Reports ; 12(4): 831-844, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30905738

RESUMO

Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche.

10.
Matrix Biol ; 77: 101-116, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30193894

RESUMO

Integrins, the major receptors for cell-extracellular matrix (ECM) interactions, regulate multiple cell biological processes including adhesion, migration, proliferation and growth factor-dependent signaling. The principal laminin (LM) binding integrins α3ß1, α6ß1 and α6ß4 are usually co-expressed in cells and bind to multiple laminins with different affinities making it difficult to define their specific function. In this study, we generated kidney epithelial collecting duct (CD) cells that lack both the α3 and α6 integrin subunits. This deletion impaired cell adhesion and migration to LM-332 and LM-511 more than deleting α3 or α6 alone. Cell adhesion mediated by both α3ß1 and α6 integrins was PI3K independent, but required K63-linked polyubiquitination of Akt by the ubiquitin-modifying enzyme TRAF6. Moreover, we provide evidence that glial-derived neurotrophic factor (GDNF) and fibroblast growth factor 10 (FGF10)- mediated cell signaling, spreading and proliferation were severely compromised in double integrin α3/α6- but not single α3- or α6-null CD cells. Interestingly, these growth factor-dependent cell functions required both PI3K- and TRAF6-dependent Akt activation. These data suggest that expression of the integrin α3 or α6 subunit is sufficient to mediate GDNF- and FGF10-dependent spreading, proliferation and signaling on LM-511. Thus, our study shows that α3 and α6 containing integrins promote distinct functions and signaling by CD cells on laminin substrata.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Integrina alfa3/metabolismo , Integrina alfa6/metabolismo , Laminina/metabolismo , Transdução de Sinais , Animais , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/química , Matriz Extracelular/efeitos dos fármacos , Fator 10 de Crescimento de Fibroblastos/farmacologia , Deleção de Genes , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Humanos , Integrina alfa3/genética , Integrina alfa3beta1/genética , Integrina alfa3beta1/metabolismo , Integrina alfa6/genética , Integrina alfa6beta1/genética , Integrina alfa6beta1/metabolismo , Integrina alfa6beta4/genética , Integrina alfa6beta4/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Laminina/química , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Calinina
12.
J Cell Sci ; 130(9): 1583-1595, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28289267

RESUMO

The α6ß1-integrin is a major laminin receptor, and formation of a laminin-rich basement membrane is a key feature in tumour blood vessel stabilisation and pericyte recruitment, processes that are important in the growth and maturation of tumour blood vessels. However, the role of pericyte α6ß1-integrin in angiogenesis is largely unknown. We developed mice where the α6-integrin subunit is deleted in pericytes and examined tumour angiogenesis and growth. These mice had: (1) reduced pericyte coverage of tumour blood vessels; (2) reduced tumour blood vessel stability; (3) increased blood vessel diameter; (4) enhanced blood vessel leakiness, and (5) abnormal blood vessel basement membrane architecture. Surprisingly, tumour growth, blood vessel density and metastasis were not altered. Analysis of retinas revealed that deletion of pericyte α6-integrin did not affect physiological angiogenesis. At the molecular level, we provide evidence that pericyte α6-integrin controls PDGFRß expression and AKT-mTOR signalling. Taken together, we show that pericyte α6ß1-integrin regulates tumour blood vessels by both controlling PDGFRß and basement membrane architecture. These data establish a novel dual role for pericyte α6-integrin as modulating the blood vessel phenotype during pathological angiogenesis.


Assuntos
Vasos Sanguíneos/metabolismo , Integrina alfa6beta1/metabolismo , Neoplasias/irrigação sanguínea , Pericitos/metabolismo , Animais , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Becaplermina , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Integrases/metabolismo , Camundongos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Pericitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
13.
Matrix Biol ; 57-58: 244-257, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043890

RESUMO

Laminins are a major constituent of the basement membranes of the kidney collecting system. Integrins, transmembrane receptors formed by non-covalently bound α and ß subunits, serve as laminin receptors, but their role in development and homeostasis of the kidney collecting system is poorly defined. Integrin α3ß1, one of the major laminin receptors, plays a minor role in kidney collecting system development, while the role of α6 containing integrins (α6ß1 and α6ß4), the other major laminin receptors, is unknown. Patients with mutations in α6 containing integrins not only develop epidermolysis bullosa, but also have abnormalities in the kidney collecting system. In this study, we show that selectively deleting the α6 or ß4 integrin subunits at the initiation of ureteric bud development in mice does not affect morphogenesis. However, the collecting system becomes dilated and dysmorphic as the mice age. The collecting system in both null genotypes was also highly susceptible to unilateral ureteric obstruction injury with evidence of excessive tubule dilatation and epithelial cell apoptosis. Mechanistically, integrin α6-null collecting duct cells are unable to withstand high mechanical force when adhered to laminin. Thus, we conclude that α6 integrins are important for maintaining the integrity of the kidney collecting system by enhancing tight adhesion of the epithelial cells to the basement membrane. These data give a mechanistic explanation for the association between kidney collecting system abnormalities in patients and epidermolysis bullosa.


Assuntos
Membrana Basal/metabolismo , Integrina alfa6beta1/genética , Integrina alfa6beta4/genética , Túbulos Renais Coletores/metabolismo , Laminina/genética , Obstrução Ureteral/metabolismo , Animais , Apoptose , Membrana Basal/patologia , Adesão Celular , Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Integrina alfa6beta1/deficiência , Integrina alfa6beta4/deficiência , Túbulos Renais Coletores/patologia , Laminina/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica , Transdução de Sinais , Ureter/cirurgia , Obstrução Ureteral/patologia , Obstrução Ureteral/cirurgia
14.
Gut ; 66(10): 1748-1760, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27371534

RESUMO

OBJECTIVE: Epidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6ß4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM. DESIGN: We developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM). RESULTS: Strikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1ß secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation. CONCLUSIONS: We provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.


Assuntos
Adenocarcinoma/fisiopatologia , Colite/fisiopatologia , Neoplasias Colorretais/fisiopatologia , Citocinas/metabolismo , Hemidesmossomos/fisiologia , Integrina alfa6/genética , Integrina alfa6beta4/metabolismo , Mucosa Intestinal/metabolismo , Imunidade Adaptativa , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linfócitos B , Membrana Basal/fisiopatologia , Caspase 1/metabolismo , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citocinas/genética , Células Epiteliais/metabolismo , Hemidesmossomos/genética , Homeostase/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Queratina-18/metabolismo , Queratina-8/metabolismo , Ativação Linfocitária , Camundongos , Muco/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Permeabilidade , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T
15.
JCI Insight ; 1(14): e88245, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27699237

RESUMO

Metastatic dissemination of cancer cells, which accounts for 90% of cancer mortality, is the ultimate hallmark of malignancy. Growing evidence suggests that blood platelets have a predominant role in tumor metastasis; however, the molecular mechanisms involved remain elusive. Here, we demonstrate that genetic deficiency of integrin α6ß1 on platelets markedly decreases experimental and spontaneous lung metastasis. In vitro and in vivo assays reveal that human and mouse platelet α6ß1 supports platelet adhesion to various types of cancer cells. Using a knockdown approach, we identified ADAM9 as the major counter receptor of α6ß1 on both human and mouse tumor cells. Static and flow-based adhesion assays of platelets binding to DC-9, a recombinant protein covering the disintegrin-cysteine domain of ADAM9, demonstrated that this receptor directly binds to platelet α6ß1. In vivo studies showed that the interplay between platelet α6ß1 and tumor cell-expressed ADAM9 promotes efficient lung metastasis. The integrin α6ß1-dependent platelet-tumor cell interaction induces platelet activation and favors the extravasation process of tumor cells. Finally, we demonstrate that a pharmacological approach targeting α6ß1 efficiently impairs tumor metastasis through a platelet-dependent mechanism. Our study reveals a mechanism by which platelets promote tumor metastasis and suggests that integrin α6ß1 represents a promising target for antimetastatic therapies.


Assuntos
Proteínas ADAM/metabolismo , Integrina alfa6beta1/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica , Ativação Plaquetária , Animais , Plaquetas , Comunicação Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Adesividade Plaquetária
16.
Int J Oncol ; 45(5): 2058-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25176420

RESUMO

The α6 integrin subunit (α6) has been implicated in cancer cell migration and in the progression of several malignancies, but its role in tumor angiogenesis is unclear. In mice, anti-α6 blocking antibodies reduce tumor angiogenesis, whereas Tie1-dependent α6 gene deletion enhances neovessel formation in melanoma and lung carcinoma. To clarify the discrepancy in these results we used the cre-lox system to generate a mouse line, α6fl/fl­Tie2Cre(+), with α6 gene deletion specifically in Tie2-lineage cells: endothelial cells, pericytes, subsets of hematopoietic stem cells, and Tie2-expressing monocytes/macrophages (TEMs), known for their proangiogenic properties. Loss of α6 expression in α6fl/fl­Tie2Cre(+) mice reduced tumor growth in a murine B16F10 melanoma model. Immunohistological analysis of the tumors showed that Tie2-dependent α6 gene deletion was associated with reduced tumor vascularization and with reduced infiltration of proangiogenic Tie2-expressing macrophages. These findings demonstrate that α6 integrin subunit plays a major role in tumor angiogenesis and TEM infiltration. Targeting α6 could be used as a strategy to reduce tumor growth.


Assuntos
Integrina alfa6/genética , Melanoma Experimental/genética , Neovascularização Patológica/genética , Receptor TIE-2/genética , Animais , Linhagem da Célula , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Integrina alfa6/biossíntese , Macrófagos/metabolismo , Macrófagos/patologia , Melanoma Experimental/patologia , Camundongos , Camundongos Transgênicos , Neovascularização Patológica/patologia , Receptor TIE-2/biossíntese
17.
J Biol Chem ; 289(7): 3842-55, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24381169

RESUMO

The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knock-out mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were down-regulated, resulting in high levels of caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells.


Assuntos
Caspase 3/metabolismo , Diferenciação Celular/fisiologia , Células Epiteliais/metabolismo , Proteínas do Olho/metabolismo , Integrina alfa6/metabolismo , Cápsula do Cristalino/metabolismo , Receptor IGF Tipo 1/metabolismo , Ativação Transcricional/fisiologia , Animais , Caspase 3/genética , Células Cultivadas , Embrião de Galinha , Ativação Enzimática/fisiologia , Células Epiteliais/citologia , Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Integrina alfa6/genética , Cápsula do Cristalino/citologia , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor IGF Tipo 1/genética , Fator de Transcrição STAT1/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
18.
J Neurosci ; 33(46): 17995-8007, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227711

RESUMO

During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the ß1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with ß1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding ß1 integrins in Schwann cells and show that only α6ß1 and α7ß1 integrins are required and that α7ß1 compensates for the absence of α6ß1 during development. The absence of either α7ß1 or α6ß1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all ß1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6ß1 and α7ß1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell ß1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.


Assuntos
Axônios/fisiologia , Integrina alfa6beta1/fisiologia , Integrinas/fisiologia , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Proliferação de Células , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Células de Schwann/ultraestrutura
19.
Circulation ; 128(5): 541-52, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23797810

RESUMO

BACKGROUND: Laminins are major components of basement membranes, well located to interact with platelets upon vascular injury. Laminin-111 (α1ß1γ1) is known to support platelet adhesion but is absent from most blood vessels, which contain isoforms with the α2, α4, or α5 chain. Whether vascular laminins support platelet adhesion and activation and the significance of these interactions in hemostasis and thrombosis remain unknown. METHODS AND RESULTS: Using an in vitro flow assay, we show that laminin-411 (α4ß1γ1), laminin-511 (α5ß1γ1), and laminin-521 (α5ß2γ1), but not laminin-211 (α2ß1γ1), allow efficient platelet adhesion and activation across a wide range of arterial wall shear rates. Adhesion was critically dependent on integrin α6ß1 and the glycoprotein Ib-IX complex, which binds to plasmatic von Willebrand factor adsorbed on laminins. Glycoprotein VI did not participate in the adhesive process but mediated platelet activation induced by α5-containing laminins. To address the significance of platelet/laminin interactions in vivo, we developed a platelet-specific knockout of integrin α6. Platelets from these mice failed to adhere to laminin-411, laminin-511, and laminin-521 but responded normally to a series of agonists. α6ß1-Deficient mice presented a marked decrease in arterial thrombosis in 3 models of injury of the carotid, aorta, and mesenteric arterioles. The tail bleeding time and blood loss remained unaltered, indicating normal hemostasis. CONCLUSIONS: This study reveals an unsuspected important contribution of laminins to thrombus formation in vivo and suggests that targeting their main receptor, integrin α6ß1, could represent an alternative antithrombotic strategy with a potentially low bleeding risk.


Assuntos
Adesão Celular/fisiologia , Integrina alfa6beta1/metabolismo , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/fisiologia , Trombose/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Humanos , Integrina alfa6beta1/fisiologia , Laminina/fisiologia , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Risco , Trombose/patologia
20.
Cell Adh Migr ; 7(3): 325-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23722246

RESUMO

Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6 (fl/fl;nestin-Cre) mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis.


Assuntos
Cerebelo/embriologia , Cerebelo/crescimento & desenvolvimento , Integrina alfa6/metabolismo , Citoesqueleto de Actina , Animais , Linhagem Celular , Movimento Celular , Proliferação de Células , Cerebelo/citologia , Regulação da Expressão Gênica no Desenvolvimento , Integrina alfa6/genética , Camundongos , Camundongos Knockout , Morfogênese , Neuroglia/metabolismo , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA